Research on Shape Mapping of 3D Mesh Models based on Hidden Markov Random Field and EM Algorithm

نویسندگان

  • Yong Wang
  • Huaiyu Wu
چکیده

Abstract How to establish the matching (or corresponding) between two different 3D shapes is a classical problem. This paper focused on the research on shape mapping of 3D mesh models, and proposed a shape mapping algorithm based on Hidden Markov Random Field and EM algorithm, as introducing a hidden state random variable associated with the adjacent blocks of shape matching when establishing HMRF. This algorithm provides a new theory and method to ensure the consistency of the edge data of adjacent blocks, and the experimental results show that the algorithm in this paper has a great improvement on the shape mapping of 3D mesh models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GMM-Based Hidden Markov Random Field for Color Image and 3D Volume Segmentation

In this project1, we first study the Gaussian-based hidden Markov random field (HMRF) model and its expectationmaximization (EM) algorithm. Then we generalize it to Gaussian mixture model-based hidden Markov random field. The algorithm is implemented in MATLAB. We also apply this algorithm to color image segmentation problems and 3D volume segmentation problems.

متن کامل

HMRF-EM-image: Implementation of the Hidden Markov Random Field Model and its Expectation-Maximization Algorithm

In this project1, we study the hidden Markov random field (HMRF) model and its expectation-maximization (EM) algorithm. We implement a MATLAB toolbox named HMRF-EM-image for 2D image segmentation using the HMRF-EM framework2. This toolbox also implements edge-prior-preserving image segmentation, and can be easily reconfigured for other problems, such as 3D image segmentation.

متن کامل

Comparing the Bidirectional Baum-Welch Algorithm and the Baum-Welch Algorithm on Regular Lattice

A profile hidden Markov model (PHMM) is widely used in assigning protein sequences to protein families. In this model, the hidden states only depend on the previous hidden state and observations are independent given hidden states. In other words, in the PHMM, only the information of the left side of a hidden state is considered. However, it makes sense that considering the information of the b...

متن کامل

Segmental Hidden Markov Models with Random Effects for Waveform Modeling

This paper proposes a general probabilistic framework for shape-based modeling and classification of waveform data. A segmental hidden Markov model (HMM) is used to characterize waveform shape and shape variation is captured by adding random effects to the segmental model. The resulting probabilistic framework provides a basis for learning of waveform models from data as well as parsing and rec...

متن کامل

INRIA Research Project Proposal mistis Modelling and Inference of Complex and Structured Stochastic Systems

5 Domains of research 10 5.1 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1.1 Learning and classification techniques . . . . . . . . . . . . . . . . . . 11 5.1.2 Taking into account the curse of dimensionality. . . . . . . . . . . . 12 5.2 Markov models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.2.1 Triplet Markov Fields f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.09123  شماره 

صفحات  -

تاریخ انتشار 2017